eDAQ Japan

EA362  デュアルピコスタット

EA362 デュアルピコスタット
EA362 デュアルピコスタット
  • 高感度の2チャンネルポテンショスタット
  • バイポテンショスタット、4本電極にも対応
 

 

デュアルピコスタットは高感度な2チャンネルのポテンショスタットで、微小電極(神経化学分析用のカーボンファイバー電極など)を使った高感度分析や低電流センサー向けに活用されています。高感度分析ではファラデーケージ内での使用をお奨めします。

またバイポテンショスタット(2本の作用電極、参照電極と補助電極を各1本使用)や、4本電極モード(作用電極と参照電極を各2本)にも対応しトランスメンブレンや ITES (2種の混合電解溶液間のインターフェース) 測定に用いられています。

デュアルピコスタットは電気アイソレート式なので、共用する刺激装置やグランドループなどによる電気的干渉を抑えます。

デュアルピコスタットは e-corder の拡張器で、e-corder 410 等のe-corder ユニットが必要です。

注: EA362 デュアルピコスタットは EA162 ピコスタットの後継機種です。.

研究分野

アプリケーションノート

引用文献 

  • Analysis of Nitric Oxide from Chemical Donors Using CMOS Platinum Microelectrodes.  Rachel M. Feeny, John B. Wydallis, Tom Chen, Stuart Tobet, Melissa M. Reynolds, and Charles S. Henry, Electroanalysis, 27, 1104 – 1109, 2015.  doi: 10.1002/elan.201400510
  • Electrochemical DNA-biosensors: Two-electrode setup well adapted for miniaturized devices.  M. Lazergesa, V.T. Tala, P. Bigeya, D. Schermana, F. Bediouia, Sensors and Actuators B: Chemical, 182, 510–513, 2013.  doi:10.1016/j.snb.2013.02.098
  • Chromobacterium Violaceum for Rapid Measurement of Biochemical Oxygen Demand.  B.H. Khor, A.K. Ismail, R. Ahamad, S. Shahir, Jurnal Teknologi, 69, 9-15, 2014.  DOI:10.11113/jt.v69.2265
  • Sensitivity enhancement of a “bananatrode” biosensor for dopamine based on SECM studies inside its reaction layer.  Zsuzsanna Őri, András Kiss, Anton Alexandru Ciucu, Constantin Mihailciuc, Cristian Dragos Stefanescu, Livia Nagy, Géza Nagy, Sensors and Actuators B: Chemical, 190, 149–156, 2014.  doi:10.1016/j.snb.2013.08.063
  • Electrochemical Devices for Monitoring Biomarkers in Embryo Development.  Maria Gómez-Mingot, Sophie Griveau, Fethi Bedioui, Craig E. Banks, Vicente Montiela, Jesús Iniesta,  Electrochimica Acta, 140, 42–48, 2014.   doi:10.1016/j.electacta.2014.03.012
  • Reorganization of Circuits Underlying Cerebellar Modulation of Prefrontal Cortical Dopamine in Mouse Models of Autism Spectrum Disorder
    Tiffany D. Rogers, Price E. Dickson, Eric McKimm, Detlef H. Heck, Dan Goldowitz, Charles D. Blaha, and Guy Mittleman.  The Cerebellum, 2013.    DOI:10.1007/s12311-013-0462-2
  • Influence of Gold Nanoparticle Film Porosity on the Chemiresistive Sensing Performance.   Edith Chow, Burkhard Raguse, Karl-H. Müller, Lech Wieczorek, Avi Bendavid, James S. Cooper, Lee J. Hubble and Melissa S. Webster
    Electroanalysis, 25, 2313–2320, 2013.   DOI: 10.1002/elan.201300303
  • Nanoelectrodes for determination of reactive oxygen and nitrogen species inside murine macrophages. Yixian Wang, Jean-Marc Noël, Jeyavel Velmurugan, Wojciech Nogala, Michael V. Mirkin, Cong Lu, Manon Guille Collignon, Frédéric Lemaître, and Christian Amatore.  PNAS, 109, 115434-11539, 2012.
  • Indium Tin Oxide devices for amperometric detection of vesicular release by single cells.  Anne Meunier, Rémy Fulcrand, François Darchen, Manon Guille Collignon, Frédéric Lemaître, Christian Amatore.   Biophysical Chemistry, 162, 14–21, 2012.
  • Dopamine dynamics associated with, and resulting from, schedule-induced alcohol self-administration: analyses in dopamine transporter knockout mice.   Guy Mittleman, Stanford B. Call, Jody L. Cockroft, Dan Goldowitz, Douglas B. Matthews, and Charles D. Blaha. Alcohol, 45, 325-339, 2011.
  • Genotype-dependent effects of adolescent nicotine exposure on dopamine functional dynamics in the nucleus accumbens shell in male and female mice: a potential mechanism underlying the gateway effect of nicotine.   Price E. Dickson, Tiffany D. Rogers, Deranda B. Lester, Mellessa M. Miller, Shannon G. Matta, Elissa J. Chesler, Dan Goldowitz, Charles D. Blaha and Guy Mittleman. Psychopharmacology,  215, 631-642, 2011.
  • Prussian Blue-modified microelectrodes for selective transduction in enzyme-based amperometric microbiosensors for in vivo neurochemical monitoring.   P. Salazara, M. Martín, R. Roche, R.D. O’Neill, and J.L. González-Mora, Electrochimica Acta, 55, 6476–6484, 2010.
  • Diffusion-limited chronoamperometry at conical-tip microelectrodes.   Dieter Britz, Shaneel Chandra, Jörg Strutwolf, and Danny K.Y. Wong. Electrochimica Acta, 55, 1272-1277, 2010.
  • Midbrain acetylcholine and glutamate receptors modulate accumbal dopamine release.   Deranda B. Lester, Anthony D.Miller, Tiffany D. Pate and Charles D. Blaha. NeuroReport, 19, 991-995, 2008.
  • In Vivo Electrochemical Detection of Nitric Oxide in Tumor-Bearing Mice.   Sophie Griveau, Charlotte Dumezy, Johanne Seguin, Guy G. Chabot, Daniel Scherman, and Fethi Bedioui. Analytical Chemistry, 79, 1030-1033, 2007.
  • Dopamine efflux in the rat striatum evoked by electrical stimulation of the subthalamic nucleus: potential mechanism of action in Parkinson’s disease.   Kendall H. Lee, Charles D. Blaha, Brent T. Harris, Shannon Cooper, Frederick L. Hitti, James C. Leiter, David W. Roberts and Uhnoh Kim. European Journal of Neuroscience, 23, 1005–1014, 2006.

 
  • 設定レンジ (理論分解能): 
           10 µA   (313 pA)                    5 µA   (156 pA)                2 µA   (62.5 pA)
           1 µA   (31.3 pA)                     500 nA (15.6 pA)             200 nA (6.25 pA)
           100 nA   (3.13 pA)                 50 nA  (1.56 pA)              20 nA   (625 fA)
           10 nA  (313 fA)                      50 nA  (156 fA)                2 nA   (62.5 fA)
           1 nA  (31.3 fA)                       5 nA  (15.6 fA)                1 nA   (6.25 fA)

           100 pA   (3.13 fA)                   50 pA  (1.56 fA)              20 pA   (625 aA)
           10 pA   (313 aA)                     5 pA  (156 aA)                2 pA   (62.5 aA)
           1 pA   (31.3 aA)
  • 入力抵抗: 1013 ohm
  • 周波数特性: 1 kHz
  • 加電圧: ~ ±2.5 V
  • コンプライアンス:  13 V
  • 絶縁: 250 Vrms